Делаем микросхемы дома — часть 3

Прошло чуть больше года после предыдущих статей о моем проекте создания микросхем дома (1, 2), люди продолжают интересоваться прогрессом - а значит пора рассказать о прогрессе.

Напомню цель проекта : научиться изготавливать несложные кремниевые цифровые микросхемы в "домашних" условиях. Это никоим образом не позволит конкурировать с серийным производством - помимо того, что оно на порядки более совершенное (~22нм против ~20мкм, в миллион раз меньше по площади), так еще и чудовищно дешевое (этот пункт не сразу стал очевиден). Тем не менее, даже простейшие работающие микросхемы, изготовленные в домашних условиях будут иметь как минимум образовательную и конечно декоративную ценность.

Начнем с неудач и драмы

Как я уже упоминал в комментариях к другому топику, попытка выйти с этим проектом на kickstarter провалилась - проект не прошел модерацию из-за отсутствия прототипа. Это заставило в очередной раз переосмыслить пути коммерциализации этой упрощенной технологии. Возможность релиза технологии домашних микросхем в виде RepRap-подобного opensource-кита покрыта туманом: очень уж много опасной, дорогой и нестойкой химии - так просто рассылать по почте не выйдет. Также по видимому отсутствует возможность делать мелкие партии микросхем дешевле серийных заводов: сейчас минимальные тестовые партии микросхем можно изготавливать примерно по 30-50$ штука (в партии ~25 штук), и существенно дешевле 30$ за микросхему сделать это на самодельной упрощенной установке не получится. Кроме того, не смотря на низкую цену на обычных заводах - любительские микросхемы практически никто не делает, задач где они имели бы преимущества перед FPGA/CPLD практически нет, а стоимость разработки - остается очень высокой.

Тем не менее, проект остается интересным в образовательных целях, как образец безумства и для создания декоративных электронных продуктов.

Логистика

Из того, что уже упоминалось в моих других статьях в последние месяцы - куплен кислородный концентратор, позволяет получить ~95% кислород без головной боли. Из вредных примесей - похоже только углекислый газ (35ppm), будем надеяться, этого будет достаточно. Также едет из Китая генератор озона (ему на входе нужен кислород) - есть результаты исследований, показывающих что им удобно растить тонкие подзатворные диэлектрики и использовать как один из этапов для очистки пластин.


Уже достаточно давно куплен металлографический микроскоп, и исследованы кучи существующих микросхем. В целом, стало намного понятнее с чем придется иметь дело. И наконец, поскольку микроскоп - симметричный прибор, его можно использовать для проекции уменьшенного изображения при фотолитографии. Совмещение изображения - визуальное и ручное. Источник освещения для проецирования - даже не обязательно УФ диодом делать, белый свет также вполне подойдет - качество изображения позволяет. Достижимые нормы фотолитографии - микронные, но смысла сильно уменьшать транзисторы нет - т.к. пропорционально уменьшается и "размер кадра", контакты к которым придется приваривать выводы станут слишком мелкими. Так что придется первоначально ограничиться нормами 10-20мкм, как и планировалось.

Микроскоп несколько поколебал веру как в отечественных производителей, так и в китайских. Оказалось, некоторые "отечественные" микроскопы - перемаркированные китайцы за 200-300% цены. С другой стороны - один из объективов похоже немного кривоват и предметный столик имел небольшой дефект литья - пришлось дорабатывать напильником (в прямом смысле этого слова).


Один из важных химических элементов для производства микросхем - вода. Опять-же в Китае куплен кондуктометр - измеритель электропроводности воды. По электропроводности можно оценить количество растворенных солей (+-50%, если не известно что именно растворено). В воде обычно растворены соли калия, натрия, кальция и марганца - и все они очень опасны для микросхем (особенное натрий и калий), т.к. их ионы могут быстро двигаться в кремнии и оксиде кремния при маленьких температурах и изменять электрические параметры транзисторов (для полевых транзисторов - пороговое напряжение, утечку).


Измерил имеющиеся образцы воды, и получил следующее:
Концентрация примесей
Водопроводная вода219ppm
Свежий бытовой фильтр118ppm
Кипяченая вода140ppm
(!!! 2 раза перепроверял)
Бидистиллированная вода из Русхима
(Не похоже на бидистиллированную)
10ppm
Деионизировнаная вода из института микробиологии0ppm
Деионизированная после 6 часов на воздухе
(Из-за растворения углекислого газа из воздуха)
8ppm
"Правильная" деионизированная вода - должна иметь 0.1ppm и менее, что меньше того, что может измерить мой прибор. Тем не менее, сразу видно, что далеко не любой источник воды подойдет. Куплены ионообменные смолы - они используются для очистки воды до деионизированной. Оказалось, закрома родины очень глубоки - одна из банок расфасована в 1968-м году


Также удалось купить и TMAH (тетраметиламмония гидроксид) - используется как проявитель для фоторезиста, не содержащий ионов щелочных металлов (которые как мы знаем - зло).


Для вакуумной системы - вместо покупки вакуумной резины (несколько раз пытался - но так и не осилил), нашелся в Китае вот такой вот gasket maker - паста, которую можно выдавить в нужную форму, она затвердевает - и становится резиновой.


По печке : для теплоизоляции - куплено вот такое базальтовое полотно, используется для теплоизоляции ядерных реакторов:


Под микроскопом - видно отдельные нити расплавленного базальта (вулканического камня), из которых сплетено полотно. Вот это настоящие нанотехнологии!!!! В голове по началу не укладывается : как из камня можно сделать тончайшие нити, и соткать гибкий материал? (масштаб : 1 пиксель ~ 3 микрометра):


Найдены и порезаны кварцевые трубки для печки разного диаметра. Первый уровень теплоизоляции - воздушный зазор межу вставленными друг в друга трубками.


Изначально я думал питать печку прямо от 220 вольт - но все-же благоразумно решил перейти на питание постоянным током 48 Вольт - это позволит как точнее регулировать и контролировать мощность, так и сделает конструкцию безопаснее. Куплены 2 блока питания на 400Вт. Как китайцы такой блок производят и доставляют за 19$ - загадка:


Для контроля температуры - изначально были куплены высокотемпературные термопары, рассчитанные на 1200 градусов (про них писал в прошлой серии - но фотографии не было). Размер конечно конский. Вероятно будет проще следить за уровнем инфракрасного излучения на длине волны 1мкм - кварц для него прозрачен.


И наконец - инертная среда для печки. В моем случае это Аргон. Из-за особенностей разделения газов - аргон получается чище, чем азот, хоть и несколько дороже. Я купил маленький 10л баллон, и регулятор. Регулятор внезапно не подошел - резьба не совпадает, нужно или переходник искать, или другой регулятор покупать.

Оказалось, сжатые газы продают рядом с домом (жизнь в промышленной зоне Москвы имеет свои преимущества) - и я приехал за ним с тележкой. Рабочий не оценил мой порыв - и настоятельно рекомендовал завернуть баллон в картон, чтобы прохожие не переживали. За 15 минут мы справились с камуфляжем. В общем, встреча с реальным миром вечно дарит сюрпризы :-)


Софт и разработка

Самое главное - удалось досконально разобраться в том, как работает микросхемы по NMOS технологии, зачем там 3 напряжения питания (или 2, со снижением скорости). Также наконец найден качественный open-source софт для разработки простых микросхем, в том числе поддерживающий и NMOS процесс - gnuelectric:



Чего еще не хватает

Из того, что упоминал в предыдущей статье - TEOS видимо не нужен, слишком сложно с ним работать, HMDS - не обязателен, по крайней мере для "больших" транзисторов.

Генератор азота - это конечно удобно, работать с пластинами в инертной атмосфере и не возиться с баллонами, но также не критично.

Единственное, что серьёзно могло бы облегчить работу - это образцы spin-on dopants и spin-on glass. В России по различным причинам их не используют и не производят, за рубежем - производителей мало, продается большими партиями и стоит дорого (тысячи $). Компания Emulsitone, у которой покупала образцы Jeri Ellsworth когда делала свои транзисторы - похоже загнулась, с ними связаться так и не удалось. Но это также не обязательный пункт - работать можно и без них (с фосфорной и борной кислотами, POCl3 и BBr3), хоть и намного сложнее / несколько опаснее.

И наконец - конечно не хватает спонсора для моих проектов, иногда между дополнительными затратами времени и дополнительными затратами денег приходится выбирать первое. Если кто-то из компаний или частных лиц имеет желание спонсировать мои проекты (условия обсуждаемы) - вы знаете, где меня найти :-).

О "серийных" проектах

В прошлой статье я упоминал и о моём классическом микроэлектронном проекте - я хотел разработать и производить на серийных заводах микроконтроллеры. Исследовав под микроскопом конкурентов (нормы производства, площадь), и узнав цены производства на практически всех заводах - стало понятно, что бизнес это хороший, хоть и капиталоемкий. Тем не менее, тут похоже пока не судьба - в Сколково проект дважды завернули, из-за отсутствия у меня профильного опыта. С одной стороны они безусловно правы, с другой - пришел бы Цукерберг в Сколково, а ему "А сколько социальных сетей вы уже создали?". Вводить в команду фиктивных членов - совершенно нет желания. Так что видимо, сначала придется зарабатывать деньги на проект другими путями, и вернуться к нему через 3-5 лет (если он тогда еще будет кому-то нужен).

Дальнейшие планы

Следующий шаг - сборка печки с управляющей электроникой, и наконец производство первых образцов. Для начала - кремниевые диоды, исследование их характеристик, затем - полевые транзисторы, возможно и биполярные. Затем нужно думать, как в домашних условиях сделать ультразвуковую или термокомпрессионную сварку проволоки с кремниевой пластиной - это нужно для подключения выводов.

Надеюсь, в обозримом будущем мы все-же увидим домашние микросхемы :-)
5 Августа 2013

RSS@BarsMonster3@14.by